Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(S)-Methyl 2-(2-iodobenzamido)propionate

Alexey Y. Koposov, Victor N. Nemykin* and Victor V. Zhdankin

Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812 USA Correspondence e-mail: vnemykin@d.umn.edu

Received 11 October 2007; accepted 23 October 2007

Key indicators: single-crystal X-ray study: T = 295 K: mean σ (C–C) = 0.008 Å: R factor = 0.038; wR factor = 0.097; data-to-parameter ratio = 20.1.

In the title compound, $C_{11}H_{12}INO_3$, molecules are linked into one-dimensional chains along the crystallographic a axis by strong intermolecular N-H···O hydrogen bonds. The onedimensional chains are additionally stabilized by weak intermolecular C_{ar} -H···O interactions. Unlike its iodine(V) analogues, the organic chain substituent in the title iodine(I) compound is not coplanar with the aromatic core but exhibits a C-C-C-O torsion angle of $50.3 (7)^{\circ}$.

Related literature

For the synthesis of the title compound, see: Zhdankin et al. (2000). For the related iodine(V) amide, see: Zhdankin et al. (2003). For other related literature, see: Koposov et al. (2006); Zhdankin et al. (2005); Chung et al. (2003).

Experimental

Crystal data C₁₁H₁₂INO₃ $M_r = 333.13$ Orthorhombic, P212121 a = 4.990 (3) Å b = 12.120 (4) Å

c = 21.176 (10) ÅData collection

Rigaku AFC-7R diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.65, \ T_{\max} = 0.78$ 3032 measured reflections 2940 independent reflections

 $V = 1280.7 (10) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 2.49 \text{ mm}^{-1}$ T = 295 K $0.30 \times 0.15 \times 0.10 \ \mathrm{mm}$

2721 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.035$ 3 standard reflections

every 150 reflections intensity decay: none

Refinement	
------------	--

- 2 . 2 -	° 3
$R[F^2 > 2\sigma(F^2)] = 0.038$	$\Delta \rho_{\rm max} = 0.32 \ {\rm e \ A^{-3}}$
$wR(F^2) = 0.097$	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$
S = 0.99	Absolute structure: Flack (1983),
2934 reflections	with 408 Friedel pairs
146 parameters	Flack parameter: -0.01 (5)
H-atom parameters constrained	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} N1 - H2 \cdots O3^{i} \\ C4 - H62 \cdots O1^{ii} \end{array}$	0.88	1.99	2.801 (6)	154 (4)
	0.93	2.56	3.46 (2)	161 (8)

Symmetry codes: (i) x + 1, y, z; (ii) $-x + 3, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: AFC-7R Software (Rigaku, 1997); cell refinement: WinAFC (Rigaku/MSC, 2000); data reduction: TEXSAN (Rigaku/ MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Generous support from the Donors of the Petroleum Research Fund, administered by the American Chemical Society (grant No. PRF-45510-GB-3 to VNN), is greatly appreciated. This work was supported by a research grant from the National Science Foundation to VVZ (grant No. CHE-0702734). The X-ray data were collected at the University of Minnesota Duluth X-ray Crystallography Facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2072).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Chung, W.-J., Kim, D.-K. & Lee, Y.-S. (2003). Tetrahedron Lett. 44, 9251-9254. Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Koposov, A. Y., Litvinov, D. N., Zhdankin, V. V., Ferguson, M. J., McDonald, R. & Tykwinski, R. R. (2006). Eur. J. Org. Chem. pp. 4791-4795.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Rigaku (1997). AFC-7R Software. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2000). WinAFC. Version 1.0.2. Rigaku/MSC, The Woodlands, Texas, USA
- Rigaku/MSC (2004). TEXSAN. Version 10.3b. Rigaku/MSC, The Woodlands, Texas, USA
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
- Zhdankin, V. V., Koposov, A. Y., Litvinov, D. N., Ferguson, M. J., McDonald, R., Luu, T. & Tykwinski, R. R. (2005). J. Org. Chem. 70, 6484-6491.
- Zhdankin, V. V., Koposov, A. Y., Netzel, B. C., Yashin, N. V., Rempel, B. P., Ferguson, M. J. & Tykwinski, R. R. (2003). Angew. Chem. Int. Ed. 42, 2194-2196
- Zhdankin, V. V., Smart, J. T., Zhao, P. & Kiprof, P. (2000). Tetrahedron Lett. 41, 5299-5302.

supplementary materials

Acta Cryst. (2007). E63, o4461 [doi:10.1107/S160053680705266X]

(S)-Methyl 2-(2-iodobenzamido)propionate

A. Y. Koposov, V. N. Nemykin and V. V. Zhdankin

Comment

Iodine(V) compounds are useful reagents for numerous oxidative transformations of different organic substrates (Koposov *et al.*, 2006; Zhdankin *et al.*, 2005; Chung *et al.*, 2003). The title compound represents an iodine(I) precursor for the preparation of the corresponding iodine(V) reagents. X-ray crystal structure analysis of the iodine(V) amide revealed the presence of a three-dimensional polymeric network formed by various types of intermolecular interactions. In particular, very strong intermolecular I···O bonding plays an important role in the formation of the tetrameric supramolecular motifs in the structure of the iodine(V) amide (Zhdankin *et al.*, 2003).

We now report the structure of the (*S*)-2-(2-iodobenzoylamino)propionic acid methyl ester, which crystalyses in the orthorhombic $P2_12_12_1$ space group (Fig. 1). In this molecule, the amidic moiety deviates from the phenyl ring plane (the C1—C6—C7—O3 torsion angle is 50.3 (7)°), thus contrasting with the structures of corresponding iodine(V) compounds where the amidic substituent was observed within the aromatic plane. The intramolecular bond distances and angles in the presented iodine(I) molecule are almost indistinguishable from those found in the corresponding iodine(V) compounds.

The molecules of (*S*)-2-(2-iodobenzoylamino)propionic acid methyl ester are linked together into one-dimensional polymeric chains by strong N—H···O hydrogen bonds (Table 1) formed between amide hydrogen atoms and the carbonyl oxygen atom O3 of a neighboring molecule at (x+1, y, z), generated by a translation along a axis (Fig. 2). The one-dimensional polymeric chain is stabilized by additional weak C—H···O hydrogen bonds formed between the phenyl ring hydrogen atom H62 and the carboxylic oxygen atom O1 of a neighboring molecule at (-x + 3, y + 1/2, -z + 3/2) (Fig. 2).

Experimental

The title compound was prepared according to a published procedure (Zhdankin *et al.*, 2000). Crystals suitable for singlecrystal X-ray diffraction were grown by slow evaporation of a methylene chloride solution of the compound.

Refinement

The amidic H atom was located in a difference density Fourier map but was ultimately positioned geometrically with a N—H distance of 0.875 Å. The other H atoms were placed in calculated positions with C—H distances of 0.930 (aromatic) and 0.980 Å (alkyl). All hydrogen atoms were refined with $U_{iso}(H) = 1.3 U_{eq}$ of their respective carrier atom. 6 reflections with [sin theta/lambda]**2 with values smaller than 0.01 were eliminated.

Figures

Fig. 1. Thermal ellipsoid representation of the title compound, with anisotropic displacement parameters for the non-H atoms of 50% probability.

Fig. 2. Thermal ellipsoid representation showing the NH…O and CH…O H-bonding at 50% probability.

(S)-Methyl 2-(2-iodobenzamido)propionate

Crystal data	
$C_{11}H_{12}I_1N_1O_3$	$F_{000} = 648$
$M_r = 333.13$	$D_{\rm x} = 1.728 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 25 reflections
a = 4.990 (3) Å	$\theta = 15 - 18^{\circ}$
b = 12.120 (4) Å	$\mu = 2.49 \text{ mm}^{-1}$
c = 21.176 (10) Å	T = 295 K
$V = 1280.7 (10) \text{ Å}^3$	Block, colorless
Z = 4	$0.30\times0.15\times0.10~mm$
Data collection	
Rigaku AFC-7R diffractometer	$R_{\rm int} = 0.035$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 295 K	$\theta_{\min} = 2.6^{\circ}$
$\omega/2\theta$ scans	$h = -6 \rightarrow 6$
Absorption correction: ψ scan Azimuthal absorption correction (North <i>et al.</i> , 1968)	$k = 0 \rightarrow 15$
$T_{\min} = 0.65, \ T_{\max} = 0.78$	$l = 0 \rightarrow 27$
3032 measured reflections	3 standard reflections
2940 independent reflections	every 150 reflections
2721 reflections with $I > 2\sigma(I)$	intensity decay: 0.00%

Refinement

Refinement on F^2	H-atom parameters constrained		
Least-squares matrix: full	$P = P(6)*\max(F_0^2, 0) + (1-P(6))F_c^2 \text{ Method} =$ SHEL XL 97 (Shaldrick, 1997) W = 1/(Sigma^2(E^*) +		
	$(P(1)p)^2 + P(2)p] P(i)$ are: 0.519E-01 2.03 0.333		
$R[F^2 > 2\sigma(F^2)] = 0.038$	$(\Delta/\sigma)_{\rm max} = 0.001$		
$wR(F^2) = 0.097$	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$		
<i>S</i> = 0.99	$\Delta \rho_{min} = -0.44 \text{ e } \text{\AA}^{-3}$		
2934 reflections	Extinction correction: none		
146 parameters	Absolute structure: Flack (1983), with 408 Friedel pairs		
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.01 (5)		
Hydrogen site location: inferred from neighbouring sites			

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
I1	0.61721 (8)	0.35486 (3)	0.538896 (17)	0.0580
N1	1.1480 (9)	0.3848 (4)	0.70627 (19)	0.0502
C3	1.1280 (14)	0.6402 (5)	0.5224 (3)	0.0653
03	0.7040 (7)	0.4075 (4)	0.6935 (2)	0.0652
C1	0.8807 (11)	0.4846 (4)	0.5611 (2)	0.0441
C8	1.1316 (13)	0.3301 (5)	0.7674 (2)	0.0600
C7	0.9335 (9)	0.4247 (4)	0.6762 (2)	0.0424
C6	0.9982 (9)	0.4959 (4)	0.6203 (2)	0.0401
C5	1.1812 (11)	0.5820 (5)	0.6293 (2)	0.0512
C4	1.2461 (13)	0.6542 (5)	0.5809 (3)	0.0617
C2	0.9463 (12)	0.5566 (5)	0.5123 (2)	0.0579
O2	1.1717 (16)	0.5073 (5)	0.8118 (3)	0.1014
C9	1.2777 (15)	0.2191 (6)	0.7664 (4)	0.0757
01	1.386 (2)	0.3732 (6)	0.8604 (3)	0.1411
C11	1.254 (3)	0.5851 (9)	0.8601 (4)	0.1409
C10	1.2453 (17)	0.4043 (7)	0.8184 (3)	0.0753
H61	1.2598	0.5911	0.6688	0.0606*
H62	1.3668	0.7114	0.5879	0.0742*
H63	1.1732	0.6875	0.4894	0.0780*
H64	0.8672	0.5481	0.4728	0.0698*
H81	0.9424	0.3168	0.7772	0.0718*
H91	1.2646	0.1845	0.8070	0.0897*
H92	1.4629	0.2307	0.7561	0.0897*
H93	1.1970	0.1725	0.7351	0.0897*
H2	1.3076	0.3941	0.6900	0.0500*
H111	1.1864	0.6598	0.8500	0.1845*
H112	1.1811	0.5611	0.9013	0.1845*

supplementary materials

H113	1.4524	0.5867	0.8623	0.13	845*	
Atomic disp	lacement parameter.	$s(A^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.05217 (18)	0.05985 (19)	0.0620(2)	-0.00088 (18)	-0.00941 (17)	-0.01249 (16)
N1	0.0281 (18)	0.077 (3)	0.046 (2)	-0.0009 (19)	-0.0024 (17)	0.0160 (19)
C3	0.072 (3)	0.070 (3)	0.053 (3)	-0.004 (4)	-0.002 (3)	0.023 (2)
03	0.0289 (17)	0.104 (3)	0.062 (2)	-0.0042 (19)	-0.0006 (16)	0.030 (2)
C1	0.039 (2)	0.049 (2)	0.044 (2)	0.007 (2)	-0.003 (2)	-0.0040 (18)
C8	0.043 (2)	0.083 (4)	0.054 (3)	-0.007 (3)	-0.004 (2)	0.023 (3)
C7	0.029 (2)	0.056 (3)	0.042 (2)	-0.0003 (19)	0.0010 (17)	0.004 (2)
C6	0.031 (2)	0.053 (3)	0.037 (2)	0.0034 (19)	0.0016 (18)	0.0005 (19)
C5	0.048 (3)	0.060 (3)	0.046 (2)	-0.007 (2)	-0.001 (2)	-0.001 (2)
C4	0.065 (3)	0.057 (3)	0.064 (3)	-0.016 (3)	-0.001 (3)	0.006 (3)
C2	0.062 (4)	0.072 (3)	0.040 (2)	0.003 (3)	-0.007 (2)	0.005 (2)
02	0.145 (6)	0.090 (3)	0.069 (3)	0.025 (4)	-0.025 (4)	0.000 (3)
С9	0.066 (4)	0.077 (4)	0.084 (5)	-0.007 (3)	-0.013 (3)	0.028 (4)
01	0.217 (9)	0.121 (5)	0.085 (4)	0.031 (6)	-0.082 (5)	0.004 (3)
C11	0.234 (18)	0.112 (7)	0.077 (5)	0.014 (9)	-0.037 (7)	-0.020 (5)
C10	0.088 (5)	0.087 (5)	0.051 (3)	0.006 (4)	-0.005 (3)	0.018 (3)

Geometric parameters (Å, °)

I1—C1	2.103 (5)	C8—C10	1.516 (10)
C6—C7	1.501 (7)	C8—H81	0.980
O3—C7	1.220 (6)	C6—C5	1.401 (7)
N1—C7	1.335 (6)	C5—C4	1.385 (8)
N1—C8	1.457 (6)	С5—Н61	0.930
O1—C10	1.192 (9)	С4—Н62	0.930
O2—C10	1.309 (9)	С2—Н64	0.930
N1—H2	0.875	O2—C11	1.451 (11)
C3—C4	1.384 (8)	С9—Н91	0.960
C3—C2	1.376 (9)	С9—Н92	0.960
С3—Н63	0.930	С9—Н93	0.960
C1—C6	1.390 (7)	C11—H111	0.990
C1—C2	1.393 (7)	C11—H112	0.990
C8—C9	1.530 (10)	C11—H113	0.990
N1—C7—O3	123.2 (5)	С6—С5—Н61	119.041
O2—C10—O1	123.1 (8)	С4—С5—Н61	119.422
C8—N1—C7	122.9 (4)	C5—C4—C3	119.0 (5)
C8—N1—H2	117.357	С5—С4—Н62	120.359
C7—N1—H2	119.675	С3—С4—Н62	120.599
C4—C3—C2	120.7 (5)	C1—C2—C3	120.1 (5)
С4—С3—Н63	119.557	С1—С2—Н64	119.834
С2—С3—Н63	119.776	С3—С2—Н64	120.069
I1—C1—C6	122.6 (4)	C11—O2—C10	117.7 (7)
I1—C1—C2	116.7 (4)	С8—С9—Н91	109.869

supplementary materials

C6—C1—C2	120.5 (5)	С8—С9—Н92	109.438
N1—C8—C9	111.2 (5)	Н91—С9—Н92	109.476
N1—C8—C10	110.0 (5)	С8—С9—Н93	109.093
C9—C8—C10	110.7 (5)	Н91—С9—Н93	109.476
N1—C8—H81	108.442	Н92—С9—Н93	109.476
С9—С8—Н81	108.543	O2—C11—H111	110.118
C10-C8-H81	107.883	O2-C11-H112	109.043
N1—C7—C6	114.3 (4)	H111—C11—H112	109.475
O3—C7—C6	122.5 (4)	O2-C11-H113	109.237
C7—C6—C1	124.3 (4)	H111—C11—H113	109.476
C7—C6—C5	117.5 (4)	H112—C11—H113	109.476
C1—C6—C5	118.1 (5)	C8—C10—O2	112.6 (6)
C6—C5—C4	121.5 (5)	C8—C10—O1	124.3 (7)

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H2···O3 ⁱ	0.88	1.99	2.801 (6)	154 (4)
C4—H62···O1 ⁱⁱ	0.93	2.56	3.46 (2)	161 (8)
0 = 1 = 1 = (1) = 1 = (1) = 1	1/2 12/2			

Symmetry codes: (i) x+1, y, z; (ii) -x+3, y+1/2, -z+3/2.

